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MONADIC THEORY OF ORDER 
AND TOPOLOGY, 1 

BY 

Y U R I  G U R E V I C H  

ABSTRACT 

We deal with the monadic theory of linearly ordered sets and topologxcal 
spaces, disprove two of Shelah 's  conjectures and prove some more results. In 
particular, if the Con t inuum Hypothesis  holds, then there exist monadic 
formulae expressing the predicates " X  is countable"  and " X  is meager"  in the 
real hne and m Cantor ' s  Discont inuum. 

Introduction 

The pure monadic language has two sorts of variables: for points and for sets 

of points. Its atomic formulae have the form x, E X,. The rest of its formulae are 

built up from the atomic ones by means of the ordinary propositional connec- 

tives and quantifiers, both for point and set variables. The monadic language of 
order is obtained from the pure monadic language by adding a new point 

predicate " < "  (so the new atomic formulae have the form x, < x  j). The 

monadic topological language is obtained from the pure monadic language by 

adding the closure operation (so the new atomic formulae have the form 

X, = .-~j). Formulae in the latter language will be called topological. 
For the sake of brevity, linearly ordered sets will be called chains. The 

monadic theory of a chain M is the theory of M in the monadic language of order 

when the set variables range over all subsets of M. The monadic theory of a 
topological space U is the theory of U in the monadic topological language when 

the set variables range over all subsets of U. A chain M can be regarded as a top. 

space. The monadic theory of this space is easily interpretable in the monadic 

theory of the chain M. 

A short survey of results concerning the monadic theory of chains can be 

found in [12]. The monadic theory of topology was studied in [3]. The present 
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paper and its forthcoming continuation [5] are closely connected with [12]. We 

generalize Shelah's results, prove some of his conjectures, disprove several of 

the others and prove some more results. Some of the results are announced in [4] 

and [7]. 

We will now summarize the contents of the present paper. In the course of this 

summary we will have to mention some results which will be proved in [5] 

and [6]. 

Recall that a subset X of a top. space U is called meager (in U) iff it is a union 

of _-< N,, nowhere dense sets. Otherwise X is of the second category (in U). 

Below, c is the cardinality of the continuum. We say that X is pseudo-meager in 

U iff it is a union of < c nwd sets. Otherwise X is of the third category. X is 

hereditarily of the third category iff each perfect subset of X is of the third 

category. 

Assuming 

( * ) The real line is of the third category 

Shelah interpreted the true arithmetic (i.e. the first order  theory of the standard 

model of arithmetic) in the monadic theory of the real line (see theorem 7.10 in 

[12]). Clearly ( * ) follows from the Continuum Hypothesis (CH). ( * ) follows also 

from Martin's Axiom (see [10]). It is well known that (* )  cannot be proved in 

ZFC. 

Theorem 7.10 in [12] can be generalized as follows. 

THEOREM 1. The true arithmetic is interpretable in the monadic theory of the 

class of top. spaces which are dense, T3, first countable, of cardinality c, and 
hereditarily of the third category. 

In particular, the true arithmetic is interpretable in the monadic (topological) 

theory of Cantor 's Discontinuum if ( * ) holds. Assuming V = L we can replace 

the true arithmetic by the full second order theory of c in Theorem 1. For a 

detailed proof of Theorem 1 in both its variants see [5], though most of the 

proof is given here in Sections 1-5. 

The main results of the present paper concern expressibility. Let K be the 

class of top. spaces described in Theorem 1. Let SK = {U: U E K and U is 

separable}. We say that a top. space U is quasi-separable iff for each non-empty 

open G C U there exists a non-empty open separable G'CG.  Let QSK = 

{U: U E K  and U is quasi-separable}. If (* )  holds then the real line and 

Cantor 's Discontinuum belong to SK. 
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THEOREM 2 (see w The predicate "2rxr_- < c "  is expressible by a top. formula 

in SK. 

THEOREM 3 (see w Assume 2 " <  2 c for each K < c. Then the predicate 

"l X / =  c"  is expressible by a top. formula in SK. 

COROLLARY 4 (Martin's Axiom). The predicate " l x l =  c"  is expressible in 

SK. 

COROLLARY 5 (CH). The predicate " X  is at most countable" is expressible in 

SK. 

Corollary 5 disproves Conjecture 7G in [12]. 

THEOREM 6 (see w Assume that c is regular, and 2 ~ < 2 c for each r < C. 

Then the predicate " X  is of the third category "' is expressible by a top. formula in 

SK. 

THEOREM 7 (see w Assume Martin's Axiom. Then the predicate "X  is 

meager" is expressible by a top. formula in QSK. 

COROLLARY ~ (CH), The predicate " X  is meager" is expressible in QSK. 

Corollary 5 gives the strongest result in a certain sense. According to w the 

predicate " X  is at most countable" is not expressible in QSK even in the 

compact case. Neither " X  is finite" nor "The  space is compact"  is expressible in 

SK even in the locally compact case. " X  is finite" is easily expressible in the 

compact case. Finiteness and compactness are easily expressible in the monadic 

theory of chains. Under some set-theoretic assumptions"X is countable" is 

expressible in countably complete chains (see [5]) which implies categoricity and 

finite axiomatizability of the real line in monadic logic. 

Modest spaces are defined in w A chain M is perfunctorily n-modest itt it has 

no jumps and for every everywhere dense subsets X~, �9 �9 X, of M there exists a 

perfect Y C M  without jumps such that Y CX~ tO �9 �9 �9 tO X, and each X, n Y is 

dense in Y. Cf. Remark 2 on page 409 in [12]. M is n-modest ill each subchain of 

M without jumps is perfunctorily n-modest.  M is modest ill it is n-modest  for 

every n. This paper was almost finished when I noticed that modesty plays a 

fundamental role in the monadic theory of rational chain. In discussions with 

Shelah it was cleared up that modesty plays a fundamental role in the monadic 

theory of all short (embedding neither to~ nor to*) chains. 

THEOREM 9. A chain is monadically equivalent to (i.e. has the same monadic 

theory as) the rational chain 0 iff it is dense, without endpoints, short, and modest. 
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Theorem 9 generalizes Theorem 6.2.B and 6.3 in [12] and has essentially the 

same proof. By [11], the monadic theory of Q is decidable. 

COROLLARY 10. The monadic theory of short modest chains is decidable. 

The proof of Theorem 9 really gives a kind of an elimination of quantifiers, tn 

particular, for each sentence F in the monadic theory of Q there exists an n such 

that n-modesty decides F in the theory of dense short chains without endpoints. 

Together with a chain variant of Theorem 2.7 below this fact gives 

THEOREM 11. Assume (*). The monadic theory of Q is not ]initely axiomatiz- 

able in monadic logic (i.e. there exists no sentence F in the monadic theory of Q 

such that each chain satisfying F is monadically equivalent to Q ). 

Theorem 11 disproves Conjecture 03 in [12]. 

Let the modest theory of a chain M be the theory of M in the monadic 

language of order when the set variables range over the modest subchains of M 

which remain modest after adding an arbitrary countable subset of M. 

THEOREM 12 (Gurevich and Shelah). The modest theory of real line is decida- 

ble and coincides with that of any complete short chain without jumps and 

endpoints satisfying the following modest axiom 3 X V y  (y E .X'). 

Theorem 12 generalizes Theorem 6.5 in [12] and can be proved by methods of 

[12]. We give a detailed proof of Theorems 9, 11 and 12 in [6]. 

Shelah noticed that assuming CH it is possible to interpret the true arithmetic 

not only in the monadic theory of the real line R but also in the monadic theory 

of each non-modest subchain of R. This gives rise to 

THEOREM 13 (see w Assume CH. For each n >- 1, true arithmetic is inter- 

pretable in the monadic theory of the class of first countable T3 space of cardinality 

c which are not n-modest. 

COROLLARY 14 (CH). The true arithmetic is interpretable in the monadic 

theory of each short chain which is not modest. 

Corollaries 10 and 14 form a dichotomy. 

Assuming V = L we can replace the true arithmetic by the full second order 

theory of c in Theorem 13 and Corollary 14 (see [5]). For each n -> 1 let K, be 

the class of top. spaces described in Theorem 13. Let SK~ (respectively QSK) be 

the class of separable (resp. quasi-separable) spaces belonging to K,. Using w it 

is easy to check 
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THEOREM 15 (CH). Corollaries 5 and 8 remain true if SK and QSK are 

replaced by SK. and QSK. respectively. 

By Theorem 6.2 and 6.3 in [12] the predicates " X  is countable" and " X  is 

meager" are not expressible in the monadic theory of modest chains. 

At an earlier stage of the present work I conjectured that, in the case of the 

real line R, no top. formula discriminates between subsets of cardinality K and 

subsets of cardinality A if 2" = 2 *. This conjecture fails (Magidor and Shelah) in 

the standard Cohen model for blowing c to w3 (see the end of w 

I am deeply indebted to Saharon Shelah for his criticism and encouragement.  I 

am grateful to Shalom Lappin for helping me with the English of this paper. 

w Terminology and notation 

[8] is used as the source of set-theoretic terminology and notation, but X C Y 

is consistent with X = Y here and the power set of X is denoted by PS(X).  

Additionally E { X , : i C I }  denotes U { X , : i E I }  in the case that {X,: i E I }  is 

disjoint, c is the cardinality of the continuum, and exp K = 2 ~. 

[9] is used as the source of topological terminology and notation. U denotes 

the top. space in which we work. A, B, C, D, E, W, X, Y, Z are arbitrary point 

sets i.e. subsets of U. G and H are non-empty open point sets. cl X = 3~, der X is 

the set of limit points of X. 

We deviate from [9] in using the notion of density. Here  X is dense iff 

X C d e r X ,  X is dense in Y iff Y C c I ( X N  Y), X is nowhere dense in Y iff 

Y - c l ( X  N Y) is dense in Y, X is everywhere dense iff X is dense in U, X is 

nowhere dense iff X is nowhere dense in U. "Everywhere  dense" and "nowhere 

dense" are abbreviated as "ewd"  and "nwd '~ respectively. 

We define: 

X C  Y iff X -  Y is nwd, 

X ~ Y i f f  X C Y  and Y C X ,  and 

X < Y  iff X C  Y and Y - X  isewd.  

We say that a top. formula F(X1, . . . ,X , )  holds in G iff G ~ F ( G  AX1, 

�9 . . , G N X , ) .  For example " X C Y  in G "  means that G N X C G N Y .  We 

define the domain of F(X~, . . . ,X , )  as do F(X~, . . . ,X . )  = U {G: F(X~, . . . ,X , )  
holds in G}. For example do (X C Y ) =  U {G: G n X c G  n Y}. 

We use the term "regular"  as a synonym of "T3". Below U is dense, regular, 

and first countable. The last property means that for each point p ~ U there 

exists a countable basis of neighbourhoods of p. In Sections 3-7 we also assume 

that U is of cardinality c and hereditarily of the third category. 
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" W L O G "  and "nbd"  abbreviate "without loss of generality" and "neighbour- 

hood" respectively. 

w Almost disjoint division 

We work in a top. space U which is dense, regular, and first countable. 

DEVINITION 1.1. A point set X C U is called Cantor (in U) iff X is perfect 

(i.e. X = d e r X ~  0) and nowhere dense. Ca(X) = {Y: Y C X  and Y is Cantor in 

the subspace X}, S C a ( X ) =  {Y: Y @ Ca(X)  and Y is separable}. 

The following theorem generalizes the statement ( * ) on page 413 in [12]. We 

deal with a meager subset and use first countability instead of second 

countability. 

THEOREM 1.1. Let U,<,~X, C X where each X, is ewd. Let A C U - X  be 

meager. Then there exists a family S CSCa(U)  of cardinality c such that: 

(1.1) each X,  is dense in each Y E S, 

(1.2) Y D Z C X  for every different Y, Z E S, and 

(1.3) each Y E S is disjoint from A. 

PROOV. Let A = U A .  where e a c h A ,  isnwd. L e t f : { 0 , 1 } X w •  be 

one-one and onto, and (gn, hn, h'n) = f-l(n). Let s and t range over the finite 

sequences of natural numbers, lh s be the length of s. s is regarded as a function 

from lhs to o~. t = s^n means that t extends s by t ( i h s )=  n. 

LEMMA 1.2. There exist open sets G(s) and points p(s) such that: 
(1.4) G ( s ) C U - f i ~ h ,  G(s^n)CG(s )  and G ( s ^ m ) n  G ( s ^ n ) = 0  if m ~  n; 

(1.5) p(s)E G(s), p (s^n)E Xh. and limp(s^n) = p(s); and 
(1.6) If p = l imp(s , )~_X then there exists a strictly increasing sequence 

t o C t l C - "  such that p E  n G(t,). 

PROOV Or LEMMA 1.2. Form G(0) = U - fi~o and pick p(0) ~ G(0). Suppose 

that G(t) and p(t) are chosen for every t with lh t =< l "and that the relevant cases 

of (1.4) and (1.5) hold. Let lhs = l and BoD BID . . .  be a nbd basis for p(s). 

Pick consecutively 

p(s ^n) E G(s) n B.  n xh.  - (~ , . ,  u {p(s)} u {p(s ^ m):  m < n}). 

Using the regularity of U, choose consecutively disjoint G(s^n) containing 

p(s^n), and H(s^n) including U - G ( s ) ,  fi,~+,, p(s), { p ( s ^ m ) : m ~ n }  and 

U {G(s^m): m < n}. Therefore, (1.4) and (1.5) are proved. 
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Now we prove (1.6). Suppose that p = l i m p ( s , ) f ~ X .  Then every N, = 

{s, I(i + 1): i < lhs,} is finite. 

In the other case take the minimal i with infinite N,. Then there exists a 

subsequence s,~,,s,, , . . ,  such that s~ ,[ i=s , , l i  . . . .  and s ,o ( i )<s , , ( i )<  . - . .  

Clearly limp(s,,  ) =  p(s.o[ i ) E  X. 

By K6nig's Lemma there exists a sequence to Ct, C . "  such that t, E N,. 

Clearly l i m p ( t , ) =  p. Lemma 1.2 is proved. 

We continue the proof of Theorem 1.1. Let S = {~'~: s c E ~2} where 

Y~ ={p(s): V k ( k  < lhs ~ g(s(k) )  = ~:(k))}. 

Note that lim,_~p(s ^f(~:(lh s), i, j )  = p(s). Hence Y~ is dense and X, is dense in 

Y,. 
Y~ is nwd. For, if p ( s ) E  G then there exists n such that G(s^n)  is disjoint 

from Y~ and intersects G. 

So S CSCa(U) ,  ISI = c and (1.1) holds. 

We now prove (1.3). Let p = l i m p ( s , ) E  Y~-X.  WLOG,  the sequence 

so, s~,.. �9 is strictly increasing and p E n t~(s,). Now use (1.4). 

We prove (1.2) by reduction to absurdity. Let p E ~'~ M ~ ' , - X  where 

~m~rlm.  Then p = l i m p ( s , ) = l i m p ( t , )  where p ( s , ) E Y ~  and p ( t , ) E Y ~ .  

WLOG,  the sequences so, s~, �9 �9 �9 and to, h, �9 " �9 are strictly increasing and p E 

(~ (s,, +,) N (~ (t,,+,) = 0. 

Theorem 1.1 is proved. [] 

COROLLARY 1.3. If I Y I < c and Yo, Y , , " "  are dense in Y, then there exists a 

countable C E Ca(Y)  such that C C U Y, and each Y, is dense in C. 

PROOF. There exists a countable X C Y  such that X C U Y, and each Y, is 

dense in X (use first countability). By Theorem 1.1 there exists S CCa(.~') such 

that IS I = c, each Y, is dense in each Z E S and S is disjoint on Y - X. Hence 

there exists Z U S disjoint from Y - X .  Build C = Y n z .  [] 

In the following lemma we allow /4, = 0. 

LEMMA 1.4. For each family {G, : i E I} there exists a disjoint family {H,: i E 

I} such that H, C G, and Z H, ~- U G,. 

PROOF. Consider functions f such that do f = / ,  fi is an open subset of G, and 

the range of f is disjoint. Take f with maximal Efi.  [] 

LEMMA 1.5. If {He: a < K} is an open basis of U, and for each a < r, 

f H~ N X I >- A >= K, then X can be partitioned into )t disjoint ewd parts. 
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PROOF. WLOG,  I XJ = A. Let f :  K • be one-one and onto, and 

(la, ra)=f-~(a).  Pick x, EHI~ n X - { x ~ :  /3 < o~}. Build X,~ = {xt~.,~:/3 < K}. 
[]  

w Modesty and Shelah's wonder sets 

DEFINITION 2.1. A subset D of U is K-modest itt K = 0  or K > 0  and for 

every X and {X~: a < K}, if X is a dense subset of D and each X~ is dense in X, 

then there exists C E C a ( D )  such that C C X  and each X,~ is dense in, C. 

For each n, the predicate " D  is n-modest"  is expressible by a top. formula. 

LEMMA 2.1. I[l<=K<=l~o, DisK-modest, X a n d { X ~ : a < K } a r e a s a b o v e ,  

then there exists a countable C C C a ( D )  such that C C X  and each X~ is dense 

in C. 

PROOF. Using first countability choose a countable dense Y C X  such that 

each X,~ is dense in Y. [] 

LEMMA 2.2. If  each C E SCa(D)  is either of cardinality < c or meager in C, 
then D is no-modest. 

PROOF. Let Xo, XI," �9 �9 C X C D, X be dense, and each X, be dense in X. By 

Theorem 1.1 there exists Co E SCa(.~) such that each X2 is dense in Co. Co n D 

is Cantor in D. If it is of cardinality < c then, by Lemma 1.3, there exists 

C C C a ( C o A D ) C C a ( D )  such that C C X  and each X, is dense in C. If it is 

meager in Co, then Co n D - X is meager in Co and, by Theorem 1.1, there exists 

C1E Ca(Co) such that C1 is disjoint from Co n D - X and each X. is dense in 

C~. Let C = CIA D. C is Cantor in D, C CX, and each X, is dense in C. []  

Suppose that I u I  = c. (According to [1] each first countable compact top. 

space is of cardinality c.) Then U has an open base of cardinality _<- c (use first 

countability) and ISCa(U)I - -  c. 

LEMMA 2.3. Suppose that ]:or each G, G n X is of the third category. Then 

there exists E C X such that 

(i) for each G, I E n G I = c, and 

(ii) each separable Cantor subset of E is of cardinality < c. 

PROOF. Let {H,,: ot < c} be an open basis of U where each H~ occurs c 

times. Let {Y~: a < c} = SCa(U).  Pick p~ ~ Ha N X -  U~<~ Y~-{p~: fl < a}. 

Then E = {p~: a < c} is the desired set. []  

Let us fix D C U. Let C range over Ca (D)  and P CPS(D) .  
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DEFINITION 2.2. C is P-good iff there exists A ~ P such that C CA. C is 

P-bad iff each P-good C'  is nwd in C. C is very P-bad iff there exists no C'  C C 

which is P-good. 

Note that if C is not P-bad then there exists G such that C N G ~  0 and 

C n c l (C N G)  is P-good. 

DEFINITION 2.3. W is a wonder set for P iff W C U - D  and for each 

separable C, 

(i) I c ' n  w I<  c if C is P-good, and 

(ii) C A  W ~ 0 i f  C is P-bad.  

LEMMA 2.4 (cf. lemma 7.4 in [12]). Suppose that for every separable C, C - D 

is of the third category in C. Then there exists a wonder set for P. 

PROOF. First, note that if C1 is P-good and C2 is P-bad, then C~ is nwd in C2. 

Because, if (~1 is dense in C2N G, then t~2n G c C'l and C2N G = 

D N C2 n G C D  n t~l = C1. 

Let SCa(D)  = {Ca: a < c}. If Ca is P-bad pick p,~ E ( t~ - D ) -  O {C~: /3 < a 

and C~ is P-good}. Then W = {p~: Ca is P-bad} is the desired set. [] 

Suppose that U is hereditarily of the third category. 

LEMMA 2.5. If D is 1-modest and E is perfect, then E - D is of the third 

category in E. 

PROOF. Suppose the contrary: E - D = U {X~: a < r} where r < c and 

each X,, is nwd in E. Let Y = E - U 3~. U is hereditarily of the third category 

hence Y is dense. As D is 1-modest there exists a countable C C Y .  C '=  

C + U (~' n ..~) and each (~ n . ~  is nwd in C. So t~ is pseudo-meager,  which is 

impossible. [] 

THEOREM 2.6. I f  D is 1-modest there exists a wonder set for P. 

PROOF. See Lemmas 2.4 and 2.5. [] 

Clearly R is not 1-modest. 

THEOREM 2.7. Assume that the real line R is of the third category. Then for 

each n >= 1 there exists an ewd X C R which is n-modest but not (n + 1)-modest. 

PROOF. Let D C R be countable and ewd. Partition D into n + I disjoint and 

ewd parts: D = D,~+ . . .  + D,. Let So = {E: E E Ca (R)  and there exists an i 

such that E is disjoint from D,}, and S~ = {E: E ~ Ca (R)  and each D, is dense 

in E}. 
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Imitating the construction of Shelah's wonder  set one can build W such that: 

(i) I E n w [ < c  if E E S , , , a n d  

(ii) E A  W E 0 i f  E E S , .  

Build X = D + W. X is not (n + l)-modest.  For, there exists no E U C a ( X )  

such that E C D  and each D, is dense in E. 

We prove now that X is n-modest .  Let Y and Y,,, . . . ,  Y, ~ be subsets of X 

such that Y is dense and each Y, is dense in Y. We look for E E C a ( X )  such that 

E C Y and each D, is dense in E. 

W L O G ,  there exists [: n ---, (n + 1) such that for each i < n, Y, C D  r, + W. 

We prove this as follows. There exist G,, and j such that G,,A Y ~  0 and 

Y,,N(D, + W) is dense in G~,N Y. There  exist G I C G , ,  and k such that 

G~ n Y g  0 and Yj n (Dk + W) is dense in G~ n Y. And so on. Now replace Y 

and Y,,, Y,,. �9 �9 by G, n Y and Yo N (13, + W) ,  YI n (Dk + W), - .  �9 respectively. 

Hence there exists an i such that for each j < n, "is, C X  - D,. W L O G ,  i = 0 and 

Y C X -  D,,. By Theorem 1.1 there exists S C C a ( X )  such that IS[ = c, each Y, is 

dense in each E E S, and S is disjoint on X - Y. There exists E,, E S which is 

disjoint from D,, (since D,, is countable). By (i), !E,,I < c. By Lemma 1.3 there 

exists E CCa(E,,)  such that E C Y and each Y, is dense in E. []  

w Representation of a family of point sets 

In this section a rather general family P of point sets is described by a top. 

formula (with a wonder  set for P among the parameters)  in such a way that the 

elements  of P satisfy this formula and every X satisfying this formula coincides 

locally with elements of P. 

As before we work in a top. space U which is dense, regular, and first 

countable. Until the end of w we also suppose that U is of cardinality c and 

hereditarily of the third category. 

Select a 2-modest D. Let C range over C a ( D )  and X CD. 

DEr:I~ITION 3.1. Let W C U - D. C is W-good  if[ (~ is disjoint from W. X is 

W - b a d  with witnesses Y and Z iff X is dense, Y and Z are dense in X, and there 

exists no W-good C C X such that Y and Z are dense in C. X is very W - b a d  if[ 

there exists no C C X which is W-good. 

Let P C P S ( D ) ,  A range over  P, and W be a wonder set for P. 

LEMMA 3.1. C is very P -bad  iff it is very W-bad .  

PROOF. If C is not very W-bad take a W-good C,,C C. Select a separable 
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Ca C C,,. According to Definition 2.3, C~ is not P-bad. Hence there exists a 

P-good C~. C C~. So C is not very P-bad. 

If C is not very P-bad take a P-good Co C C. Select a separable C~ C Co. 

According to Definition 2.3 I(~, n W I < c. Use Theorem 1.1 to choose a W-good 

C2CC~. C is not very W-bad. []  

LEMMA 3.2. If  C is W-bad  (with some witnesses), then it is P-bad. 

PROOF. Let Y, Z witness that C is W-bad. For reduction to absurdity 

suppose that C is not P-bad. Then there exists G such that C n G ~ 0  and 

Co = C n cl(C N G)  is P-good. C,, is W-bad with witnesses Y and Z. Using the 

2-modesty of D take a countable C~CC,~ such that Y, Z are dense in C,. 

According to Definition 2.3, I ~'~ n W I < c. Using Theorem 1.1 one can choose a 

W-good C2 C Ca with Y, Z dense in (?2 which contradicts the fact that C is 

W-bad with witnesses Y, Z. [] 

LEMMA 3.3. Suppose that P is disjoint, and X is dense and has no very P-bad 

subsets. Then for each G with G n X ~ 0 there exist G'  C G and A E P such that 

G' A X ~ 0 and A is dense in G' A X. 

PROOF. Suppose the contrary. Then there exists G such that G M X ~  0 and 

each A is nwd in G n X. Pick xo, xl," "" E G n X such that 

(i) x,, E A and m < n imply x, ~ A, and 

(ii) each x,, @cl{x , :m <:n}. 

Using the 1-modesty of D take CC{x , :  n < t o } .  C is very P-bad which 

contradicts the conditions of the lemma. []  

Select D" C  D and suppose that { A n  D~ A E P} is disjoint. For each Y let 

Y~= D ~ N Y. 

LEMMA 3.4. Suppose that C ~ has no very P-bad subsets and is dense in C. I f  C 

is P-bad, then it is W-bad  with one of the witnesses in D O . 

PROOF. Let g, h range over the non-empty open subsets of C. By virtue of 

Lemma 1.4 it is enough to prove that for each g there exists h C g which is 

W-bad with one of the witnesses in D ~ Select g. By Lemma 3.3 there exist h C g 

and A which is dense in h". Let Y = h ~  A and Z = h - A. Y and Z witness 

that h is W-bad. Because, let C1 C Y U Z and Y, Z be dense in C~. Using the 

2-modesty of D take a countable C2CC~ with Y, Z dense in C2. If Ca is 

W-good, then C2 is W-good. According to Definition 2.3, C2 is not P-bad. But 

C2 is P-bad. [] 
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THEOREM 3.5. The following statements are equivalent: 

(i) X has no W-bad subset with one of the witnesses in D ~ 

(ii) For every countable C C X, if C ~ is dense in C, then UA do(C C A )  is 

dense in C, and 

(iii) For each perfect E C U, if X ~ is dense in E O X then 

E ~ ( U A d o ( E  n X C A  n E)  is ewd). 

PROOF. ( i ) ~  (iii). Without loss of generality E -- U. For reduction to absurd- 

ity let G C U - UAdo(X  CA) .  Then X~ is dense in G. By Lemma 3.3 there exist 

G ' C G  a n d A  such t h a t A  is dense in G ' N X  ~  Y = G ' A X  ~  and 

Z = G'  n X - A. Using the 2-modesty of D take C C Y U Z such that Y and Z 

are dense in C. Now use Lemma 3.4. 

That (iii)-* (ii) is clear. 

(ii)--~(i). Let X ~ C X  be W-bad with witnesses Y C D  ~ and Z. Take a 

countable C C X1 such that Y and Z are dense in C. By Lemma 3.2 C is P-bad, 

hence C N d o ( C C A ) = O  for every A. [] 

Let St'(X, D, D ~ W) be a topological formula saying that X C D  and 

(3.1) X has no W-bad subset, and 

(3.2) If Y C X  ~ Z C D - X ,  and Y, Z are dense in Y + Z ,  then Y and Z 

witness that Y + Z is W-bad. 

LEMMA 3.6. Each A E P satisfies St'. 

PROOF. By virtue of Lemma 3.2 A satisfies (3.1). If Y C A ~  and 

Y, Z are dense in Y + Z, take C C Y + Z with Y and Z dense in C. By Lemma 

3.4, C is W-bad. [] 

THEOREM 3.7. (cf. lemma 7.7 in [12]). Suppose that X satisfies St', E C U is 

perfect, and X ~ is dense in E. Then E ~ ( E A  do(E n X = A n E)  is ewd). 

PROOF. Without loss of generality E = U. For reduction to absurdity let 

G c U - U A d o ( X = A ) .  By Theorem 3.5, there exist A and G ' C G A  

do(X ~  Y = G ' A X " a n d Z = G ' A A - X .  By(3.2), Y + Z i s W - b a d .  

On the other hand, Y +  Z is included in A which has no W-bad subset. [] 

Let St(X, D, D ~ W) say that X CD, and for each G there exists H such that 

St ' (H N X, D n H, D O n H, H n w)  holds in H, and D Cc lX ~ Let D be ewd. 

THEOREM 3.8. X satisfies St iff X CD and E d o ( X  = A ) i s  ewd. 

PROOF is clear. [] 
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w Towers 

Here we present a top. formula defining towers of point sets. 

Recall that X <  Y iff X -  Y is nwd and Y - X  is ewd. Correspondingly 

X <  Y i n  G iff X - Y i s n w d i n  G and Y -  X is dense in G. 

DEFINITION 4.1. A quadruple T-= ( D , D ~  1, W) is a tower iff it satisfies 

conditions (4.1)-(4.3) below where A, B range over [T] = {X: St(X, D, D ~ W)}, 

A ~ = A A D  , and B ' = B n D  ". 

(4.1) D is2-modest ,  D ~  D ~ D 1 are ewd, and W C U - D .  

(4.2) d o ( A " =  B~ do(A ~ 71B ~ = 0) is ewd, do(A 1CB l) U d o ( B '  CA ') is 

ewd, and do(A ~  B ~  do(A ' =  B ' ) ~  do(A = B). 

(4.3) There exist no G and P C[T]  such that P #  0 and for each A E P there 

exists B E P such that B ' <  A ~ in G. 

LEMMA 4.1. Suppose that (4.1) and (4.2) hold. Then (4.3) is equivalent to 

(4.3') There exist no G and W' such that 

P ' =  {X: G ~ S t ( X , D  n G, DI'N G, G n W')}~ 0 

and for each X E P' there exist A ~ [T] and Y E P' such that A n G ~ x and 

Y~ < X '  in G. 

PROOF. Suppose --7 (4.3). Pick Ao, A , , . . .  E P such that A 0 ~ > A z > . . .  in G. 

By (4.2), m < n implies A o N A ~ n G ~ 0. Let X, = (A~ - U , , < , A  ~ + A 1 and 

W' be a wonder set for {X, n G:  n E o9}. ---1(4.3') is proved. 

Suppose --7(4.3'). Pick X,,, X, , .  �9 �9 E P '  and Ao, A, , -  �9 �9 ~ [T] such that for each 

n, AI,>AI,+, in G and A ,  N G ~ X , .  Let P = { A , : n E o ) } .  --7(4.3) is 

proved. []  

COROLLARY 4.2. The predicate "(X~, X2, X3, X4) is a tower" is expressible by 

a top. formula. 

If (X,, X2, X3, X~) is a tower, then the elements of {X: St(X, X,, 3;2, X~)} will 

be called storeys of this tower. In what follows T = (D, D ~ D' ,  W)  is a tower, A 

and B range over the storeys of T, and X" = D ~ n X if X C D  and e = 0, 1. 

LEMMA 4.3. Suppose that U {G,: i E I} is ewd. Given a family {A, : i E I} of 

storeys one can find a disjoint family {H, : i E I} and a storey B such that H, C G,, 

Z H, is ewd and B = A, in H,. 

PROOF. Use Lemma l.4 to find appropriate H,'s. Bu i ldB = E ( A ,  ni l , ) .  [ ]  
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LEMMA 4.4. If Po is a family of storeys and P~ = {A : B E P0--* B l ( A 1} # 0, 

then PI has a minimal (according to C )  element. 

PROOF. Suppose the contrary. By virtue of Lemma 4.3 there exists G such 

that for any A E P~ and G '  C G, A is not minimal in G'. By virtue of (4.3) it is 

enough to prove that for each A E P~ there exists B E P, such that B 1 < A ' in G. 

Let A E P~. A is not minimal in any G '  C G. Hence for each G '  C G there exists 

B and G " C G '  such that B t < A  1 in G". Now use Lemma 4.3. [] 

THEOREM 4.5. There exist an ordinal h (T)  (the height of T), a family 

{D,, : a < h (T)} of T-storeys (a skeleton of T), and a non-empty open set d o (T)  

(the domain of T) such that 

(4.4) a </3 < h(T)  implies D~ < D~, 

(4.5) For each A, Z{do(A = D~): a < h(T)} is dense in do(T) ,  and 

(4.6) If ~;do(A = Do) is dense in G for each A, then G Cdo(T) .  

NOTE. (4.5) is equivalent to 

(4.5') For every A and G C d o ( T )  there exist G ' C G  and a such that 

A ~ D ~ i n G ' .  

PROOF OF THEOREM 4.5. If {Do: /3 < a} is already built let P~ ={A : for each 

/3 < a, D ~ <  A '  in U}. If P ~ / 0  let D,, be a minimal element in P~. If P,, =0 end 

the process and let h ( T ) =  a. Let P ( G ) = { A :  for each a, D ~ < A  1 on G}, 

G,, = U {G: P ( G ) ~  0}, and d o t  = U-clG, I .  By Lemma 4.3, P(Go)~O, hence 

d o T / ( ) .  (4.4) and (4.6) are clear. We check (4.5'). Choose A and G CdoT.  

P(G)  = 0 and (4.2) imply that there exist a and G '  C G such that A ' - D~ is nwd 

in G'.  If a is the least possible such that this condition holds, then D ~ -  A ~ is 

nwd in G '  by the construction of D~. Hence A ~ n G '  ~ D ~ n G '  and by (4.2), 

A A G ' - ~ D , , A G ' .  [] 

w More about towers 

Here we prove some auxiliary results which will be used later on. 

If U is separable, then there exists a countable family {G,: n E to} such that 

each G includes some G,. In this case U is Suslin (i.e. each family of disjoint 

open subsets of U is at most countable) and for each ewd X C U there exists a 

countable ewd Y C X. A separable chain is embeddable in the real line, hence it 

is second countable. 

LEMMA 5.1. If U is separable, then each tower is of height < c § 
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PROOF. Let {D~: a < h(T)}  be a skeleton of tower  T = ( D , D ~  ', W). For  

each a < h ( T )  choose an ewd countable  X~ C D ~  By (4.2), X ~ X o  if 

a# /3 .  S o l h ( T ) l < = c " = c .  [] 

DEFIMTION 5.1. A tower  T is exponential on E if[ for each X C E there exists 

a T-s torey A such that A n E ~ X. 

LEMMA 5.2. Let T = (D, D ~ D ~, W)  be a tower. Suppose that T is exponential 

on D 2 and for each G, I D 2 V~ G I >>- K >= N,,. Then h (T)  >= expK. 

PROOF. W L O G  d o ( T ) =  U and I D21 = K. Because,  there exist )t and 

G C d o T  such that for each G ' C G ,  ID2A G' I = )t, and we can work in G. 

Let {D~ : a < h (T)} be a skeleton of T. By L e m m a  1.5, D 2 = E{X0 :/3 < K } for 

some ewd Xo's.  Let S = {(a, I ) :  oe < h(T)  and I C K and there exists G such that 

D~ = E{X~: /3 E I} in G}. For  each I there exists a such that (a, I ) E  S. Hence  

IS I =  > expK. Each  disjoint family of open subsets of U is of cardinali ty =< K. 

Therefore ,  for each a there are at most K different I's such that (a, I ) C  S. 

H e n c e  ,, "lh(T)l>=lSl>=expK and h(T)_->expK. [ ]  

LEMMA 5.3. Suppose that Y. H, is ewd. For each i let 7], = (D,, D ~ D ~, IV,) be a 

tower in the subspace 14,. Then T = (E D,, E D ~ Y D l, E IV,) is a tower in U. If, for 

each i, 7], is exponential on E, CD,, then T is exponential on E E,. 

PROOF. L e m m a  5.3 is obvious. [ ]  

LEMMA 5.4. Suppose that D is 2-modest and for each G, I D n G I >= 2~ >= No. 

Then there exists a tower T = (D, D ~ D ~, W)  with skeleton {D~ : ~ < h (T)} such 

that h (T) >= ,~ and {D" N D~ : a < h (T)} is disjoint. Moreover, if E C D, )t >= 2 ~ 

and VG 3 G '  (G' C G and I E n G' I  <-- ~ ), then T can be chosen in such a way 

that D~ D ~ is disjoint from E and T is exponential on E. 

PROOF. By virtue of L e m m a s  1.4 and 5.3 we can suppose that for each G, 

I D V1 G I = )t and ] E n G ] = K. By L e m m a  1.5, D - E can be part i t ioned into ,~ 

disjoint ewd parts. Let {X~: a < A}+{Y~: a < A} be the family of these parts. 

Let  P S ( E )  = {Z, :  o~ < A}. Build D~ = Xo + E o ~  Y~+Z~. By T h e o r e m  2.6 there 

exists a wonder  set W for {D~ : c~ < A}. T = (D, EX~, Y Y~, W) is the desired 

tower. [ ]  

Recall  that  X C Y if[ X - Y is nwd. Correspondingly ,  X C Y in G iff X - Y 

is nwd in G. Let T = ( D , D " , D ' ,  W) be a tower  with skeleton {D~: a < h(T)},  

and X ~ = D  ~ 71X. 

DEFINITION 5.2. T is stable iff for each tower  T '= ( E , E * , E ' ,  W') with 
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D ~  there exists X C D  ~ such that for each T-storey A and each G, A~ X 

in G iff there exists T'-storey B with A ~  ~ in G. 

LEMMA 5.5. If do ( T ) =  U and {D~ a < h (T)} is disjoint, then T is stable. 

PROOF. T a k e X =  U{D ~  there exis tsa  T'-storey B with D ~  

B ~  G}. [] 

LEMMA 5.6. Suppose that T is stable and [D [ < c. Let I C h ( T )  be of 

cardinality <= c. Then there exists X C D  ~ such that for every G and a < h(T) ,  (i) 

a E I implies D ~  and (ii) D~ in G implies a E I. 

PROOF. By Lemma 2.5, U - D  is hereditary of the third category. By 

Lemmas 2.2 and 2.3 there exists a 2-modest E* C U - D such that for each G, 

I G A E * I = c .  By Lemma 1.5, E*=E~<cE* for some ewd E*~'s. Let 17.= 

D + E * ,  E ~ = D ~ + E * ,  and W' be a wonder set for {E~: a E I } .  Clearly, 

T' = (E, E*, D' ,  W') is a tower. Let X be as in Definition 5.2. If a E I, then Eo is 

a storey of T'. Hence D ~  If D ~  in G, then D ~  ~ in G for some 

storey B of T'. By Theorem 4.5 there exists /3 E I such that G n 

d o ( S = E ~ ) ~ 0 .  Clearly, a = / 3 E I .  [] 

COROLLARY 5.7. I f  T is stable on 0 2, then exp[Ol>-[h(T)[  ~. 

LEMMA 5.8. Suppose that U is separable. Then for each n, the predicate 

" h ( T )  = to," is expressible by a top. formula. 

PROOF is easy. 

It is not difficult to express " h ( T ) =  to,", " h ( T ) =  c"  and many other 

properties. 

w Countable sets and sets of cardinality c 

Suppose that U is separable. Recall that expr  = 2". 

LEMMA 6.1. The following statements are equivalent: 

(6.1) VG 3 G '  ( G ' C G  and e x p [ G ' n X [ < - c ) ,  and 

(6.2) There exist a tower T -- (D, D ~ D 2, W)  and D 2 C D - (D o + D l) such 

that D ~ ~ X and T is exponential on D 2. 

PROOF. Suppose that (6.1) holds. WLOG, there exists K such that for each G, 

IG n x [  = K. Because, let G, = U {G: for each G ' C G ,  ] G ' A X  I = r}. Then 

E G, is ewd. Now use Lemma 5.3. 

By Lemma 2.3 there exists E C U - X such that for each G, I E n G I = c, and 
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each separable Cantor subset of E is countable. Let D -- E + X. By Lemma 2.2, 

D is 2-modest. Now use Lemma 5.4. 
Suppose that (6.2) holds. For reduction to absurdity suppose that there exists 

G such that for each G ' C G ,  e x p l G ' n X I  >c-  Then for each G ' C G ,  

expl G '  n D2I > c. By Lemma 5.2 it follows that I h(T)l  > c which contradicts 

Lemma 5.1. []  

THEOREM 6.2. The predicate " e x p I X  I _-< c "  is expressible by a top. formula. 

PROOF. Say X is small iff it satisfies (6.1). According to Lemma 6.1, the 

predicate " X  is small" is expressible by a top. formula. Therefore, it is enough to 

prove that e x p i X  I < c is equivalent to: 

(6.3) For each perfect set E, E n X is small in E. 

Clearly expIX I _-< c implies (6.3). Suppose that exp lX  I > c. Let G = U {G': 

e x p J G ' n X l < - _ c }  and E =  U - G .  Clearly E # 0  and F A X  is not small in 

E. []  

COROLLARY 6.3 (CH). The predicate " X  is at most countable" is expressible 

by a top. formula. 

LEMMA 6.4. Assume that VK(r  < c - - ~ e x p r  < e x p c ) .  The following state- 

ments are equivalent: 

(6.4) For each G, I G O X  I=c,  and 

(6.5) I f  G n X is 2-modest then there exists a tower T = (D, D ~ D I, W)  in G 

such that D C X, and T is stable and exponential on some Y which is dense in G. 

PROOF. (6.5) implies (6.4) by Lemma 2.2, Lemma 5.2 and Corollary 5.7. (6.4) 

implies (6.5) by Lemmas 5.4 and 5.5. [] 

THEOREM 6.5. Assume that V K (K < C --'~ e x p r  < expc).  Then the predicate 

IXI = c is expressible by a top. formula. 

PROOF. Let us say that X is everywhere big iff it satisfies (6.4). By Lemma 6.4, 

the predicate " X  is everywhere big" is expressible by a top. formula. But IX I = c 

iff there exists a perfect E such that E n x is everywhere big in E. [] 

Let M be the standard Cohen model for blowing c to to3. In M, expN0 = 

expN2=M3. At our request Menachem Magidor verified the following 

phenomena in M: 

(i) The real line R is of the third category; and 

(ii) If (X,,: a < a*)  is a sequence of sets of rational numbers and ot </3 

---~X~<Xo, then a* < ~t2. 
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The following note is due to Saharon Shelah. Let r (X) state that there exist a 

perfect E and a tower T = (D, D ~ D ~, W) in E such that D C X  and h ( T )  = to2. 

This formula discriminates between countable subsets and subsets of cardinality 

~t2 of R. 

w Meager sets 

LEMMA 7.1. Assume that c is regular. Then the following statements are 

equivalent: 

(7.1) For each G, G f3 X is of  the third category (in U), and 

(7.2) There exists D C X such that for each G, I D r G I = c, and each Cantor 

subset of D is of cardinality < c. 

PROOF. By Lemma 2.3, (7.1) implies (7.2). The other implication is 

obvious. [] 

Let us say that X is everywhere of the third category if[ it satisfies (7.1). 

LEMMA 7.2. Suppose that U is separable. Then X is of the third category if[ 

there exists G such that G N X is everywhere of the third category in G. 

PROOF. Suppose that for each G there exists G ' C G  such that G ' ~  X is 

pseudo-meager. By Lemma 1.4, there exists a disjoint family {H,: i E I} such 

that E H, is ewd and for each i there exists K, < c such that H, N X is a union of 

K, nwd sets, WLOG,  I = to, since U is separable. Let K = r0+  K~+ . . . .  K < c 

since c f ( c ) >  o~. X is a union of r nwd sets, hence X is pseudo-meager. 

The other implication is clear. []  

THEOREM 7.3. Assume 

(7.3) c is regular, and expK < e x p c  for each K <c.  

I f  U is separable then the predicate " X  is of the third category" is expressible by 

a top. formula in U. 

PROOF. See Lemmas 6.5, 7.1 and 7.2. [] 

LE~MA 7.4. Lemma 7.2 remains true if " U  is separable" is replaced by 

(7.4) There exists K < c such that each pseudo-meager subset of U is a union of 

<= K nwd sets. 

PROOF is clear. [] 

(7.4) holds if c is a successor. 

Suppose that U is quasi-separable; i.e. for each G there exists a separable 

G ' C G .  
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THEOREM 7.5. Suppose (7.3) and (7.4). Then the predicate " X  is of the third 

category" is expressible by a top. formula in U. 

PROOF. By Lemma 6.5, there exists a top. formula F(G, X )  stating G N X I 

= c in case G is separable. By Lemma 7.1, there exists a top. formula 

F'(G, X)  stating that G f3 X is everywhere of the third category in G m case G 

is separable. By Lemma 7.4, X is of the third category iff 3 G V G ' ( G ' C  

G--~ F ' (G' ,X)) .  [] 

COROLLARY 7.6 (CH). The predicate " X  is meager" is expressible by a top. 

formula in U. 

THEOREM 7.7. Assume Martin's Axiom. Then the predicate " X  is meager" is 

expressible by a top. formula in U. 

PROOF. By virtue of Martin's Axiom, if K < c then expK _--<C (see [10]). 

Hence the assumption in Theorem 6.5 holds. 

Further, each pseudo-meager subset of U is meager. By virtue of Lemma 1.4 

it is enough to check this statement in the case where U is separable. In this case 

U has a countable quasi-basis; i.e. there exists {G,: n E to} such that each G 

includes some G,. Martin and Solovay proved in [10] that each pseudo-meager 

subset of the real line is meager. Their  proof is valid for each top. space with a 

countable quasi-basis. 

Hence Lemma 7.1 remains true if the supposition "c is regular" is omitted. 

Now use the proof of Theorem 7.5. [] 

w Inexpressible properties 

Let CD be Cantor 's Discontinuum (as a top. space). For each K > 0 let CD • K 

be a top. space which splits into K disjoint sets which are closed, open, and 

homeomorphic  with CD. If K is infinite let C D •  K + 1 be a one point 

compactification of CD • K. 

THEOREM 8.1. For each K > 0, CD x K has the same monadic theory as CD. 

For each infinite K, CD X r + 1 has the same monadic theory as CD. 

PROOF. Note that CD • n and CD • No + 1 are homeomorphic  with CD. Now 

use Ehrenfeucht 's  Game Criterion. [] 

COROLLARY 8.2. Let K be the class of top. spaces which are dense, regular, 

locally compact, and second countable. The proposition "The space is compact" 

and the predicate " X  is finite" are not expressible by top. formulae in K. 
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COROLLARY 8.3. Let K be the class of dense and regular top. spaces which are 

either 

(i) locally compact and locally second countable (i.e. for every G and p E G 

there exists a second countable G' such that p E G ' C G ) ,  or 

(ii) compact and quasi-second countable (i.e. for each G there exists a second 

countable G' C G). 

Then for any infinite K neither "l X I = r "  nor "t X/--< r "  is expressible by a top. 

formula in K. 

w Immodesty 

Tr~EOREM 9.1 (CH). For each n, the true arithmetic is interpretable in the 

monadic theory of the class of regular first countable top. spaces of cardinality c 

which are not n-modest. 

PROOF. Let U be a regular first countable top. space of cardinality c which is 

not n-modest. Then there exists D C U  and X , , . . . , X ,  CD such that D is 

dense, and each X, is dense 

X, is dense in C. WLOG, D 

work in D only). 

For each perfect E, if X~, 

category in E. 

For, suppose that E -  D 

C ~ Ca(E)  which is disjoint 

in D and there exists no C E Ca(D)  such that each 

is countable (use first countability) and ewd (we will 

�9 " ", Xn are dense in E then E - D is of the second 

is meager in E. Then, by Theorem 1.1, there exists 

from E - X (i.e. C C D)  and each X, is dense in C. 

Let S = {C: C ~ SCa(D) and XI,.  �9 ", X, are dense in C}. Following the proof 

of Lemma 2.4 it is easy to check that for each P CPS(D)  there exists W C U - D 

such that for each C ~ S 

(9.1) I t f f n W [ < c  if 3 A ( C  c A  ~ P), and 

(9.2) 6" n w ~  0 if there exist no G and A E P  such t h a t 0 ~ C n G C A .  

The rest of the proof of Theorem 9.1 parallels the proof of theorem 7.10 in 

[12]. A more detailed proof will be presented in [5]. 

REFERENCES 

1. A. V. Arhangelski, On the cardinality o[[irst countable compacta, Soviet Math. Doklady 10 
(1969), 951-955. 

2. P. ErdSs and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 
427-489. 

3. A. Grzegorczyk, Undecidabdity o[some topological theories, Fund. Math. 38 (1951), 137-152. 
4. Y. Gurevich, Monadic theory of order and topology, 1 (Abstract), J. Symbolic Logic, to 

appear. 



Vol. 27, 1977 MONADIC THEORY 319 

5. Y. Gurevich, Monadic theory o[ order and topology, 2, in preparation. 
6. Y. Gurevich and S. Shelah, Modest theory o[ short chains, II, in preparation. 
7. Y. Gurevich and S. Shelah, Modesty, Notices Amer. Math. Soc. 24 (1977), A-20. 
8. T. J. Jech, Lectures in set theory, Springer Lecture Notes 217, 1971. 
9. K. Kuratowski, Topology, Academic Press, New York, 1966. 
10. D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), 

143-178. 
11. M. O. Rabm, Decidability o[ second order theories and automata in in]inite tress, Trans. 

Amer. Math. Soc. 141 (1969), 1-35. 
12. S. Shelah, The monadic theory o[ order, Ann. of Math. 102 (1975), 379-419. 

DEPARTMENT OF MATHEMATICS 
BEN GURION UNIVERSITY OF THE NEGEV 

BE'ER SHEVA, ISRAEL 


